Browse Source

Added ctt test

main
Bill Ladwig 7 years ago
parent
commit
2c35edd7d7
  1. 50
      test/ctt_test.py

50
test/ctt_test.py

@ -0,0 +1,50 @@ @@ -0,0 +1,50 @@
from netCDF4 import Dataset
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
import cartopy.crs as crs
from cartopy.feature import NaturalEarthFeature
from wrf import to_np, getvar, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords
# Open the NetCDF file
ncfile = Dataset("/Users/ladwig/Documents/wrf_files/problem_files/cfrac_bug/wrfout_d02_1987-10-01_00:00:00")
# Get the sea level pressure
ctt = getvar(ncfile, "ctt")
# Get the latitude and longitude points
lats, lons = latlon_coords(ctt)
# Get the cartopy mapping object
cart_proj = get_cartopy(ctt)
# Create a figure
fig = plt.figure(figsize=(12,9))
# Set the GeoAxes to the projection used by WRF
ax = plt.axes(projection=cart_proj)
# Download and add the states and coastlines
states = NaturalEarthFeature(category='cultural', scale='50m', facecolor='none',
name='admin_1_states_provinces_shp')
ax.add_feature(states, linewidth=.5)
ax.coastlines('50m', linewidth=0.8)
# Make the contour outlines and filled contours for the smoothed sea level pressure.
plt.contour(to_np(lons), to_np(lats), to_np(ctt), 10, colors="black",
transform=crs.PlateCarree())
plt.contourf(to_np(lons), to_np(lats), to_np(ctt), 10, transform=crs.PlateCarree(),
cmap=get_cmap("jet"))
# Add a color bar
plt.colorbar(ax=ax, shrink=.62)
# Set the map limits. Not really necessary, but used for demonstration.
ax.set_xlim(cartopy_xlim(ctt))
ax.set_ylim(cartopy_ylim(ctt))
# Add the gridlines
ax.gridlines(color="black", linestyle="dotted")
plt.title("Cloud Top Temperature")
plt.show()
Loading…
Cancel
Save