A collection of diagnostic and interpolation routines for use with output from the Weather Research and Forecasting (WRF-ARW) Model.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

286 lines
9.7 KiB

from __future__ import (absolute_import, division, print_function,
unicode_literals)
from .util import (get_iterable, is_standard_wrf_var, extract_vars, viewkeys,
get_id)
from .cape import get_2dcape, get_3dcape
from .ctt import get_ctt
from .dbz import get_dbz, get_max_dbz
from .dewpoint import get_dp, get_dp_2m
from .geoht import get_geopt, get_height
from .helicity import get_srh, get_uh
from .latlon import get_lat, get_lon
from .omega import get_omega
from .pressure import get_pressure, get_pressure_hpa
from .pw import get_pw
from .rh import get_rh, get_rh_2m
from .slp import get_slp
from .temp import get_tc, get_eth, get_temp, get_theta, get_tk, get_tv, get_tw
from .terrain import get_terrain
from .uvmet import (get_uvmet, get_uvmet10, get_uvmet10_wspd_wdir,
get_uvmet_wspd_wdir)
from .vorticity import get_avo, get_pvo
from .wind import (get_destag_wspd_wdir, get_destag_wspd_wdir10,
get_u_destag, get_v_destag, get_w_destag)
from .times import get_times
from .cloudfrac import get_cloudfrac
# func is the function to call. kargs are required arguments that should
# not be altered by the user
_FUNC_MAP = {"cape2d" : get_2dcape,
"cape3d" : get_3dcape,
"dbz" : get_dbz,
"maxdbz" : get_max_dbz,
"dp" : get_dp,
"dp2m" : get_dp_2m,
"height" : get_height,
"geopt" : get_geopt,
"srh" : get_srh,
"uhel" : get_uh,
"omega" : get_omega,
"pw" : get_pw,
"rh" : get_rh,
"rh2m" : get_rh_2m,
"slp" : get_slp,
"theta" : get_theta,
"temp" : get_temp,
"tk" : get_tk,
"tc" : get_tc,
"theta_e" : get_eth,
"tv" : get_tv,
"twb" : get_tw,
"terrain" : get_terrain,
"times" : get_times,
"uvmet" : get_uvmet,
"uvmet10" : get_uvmet10,
"avo" : get_avo,
"pvo" : get_pvo,
"ua" : get_u_destag,
"va" : get_v_destag,
"wa" : get_w_destag,
"lat" : get_lat,
"lon" : get_lon,
"pressure" : get_pressure_hpa,
"pres" : get_pressure,
"wspd_wdir" : get_destag_wspd_wdir,
"wspd_wdir10" : get_destag_wspd_wdir10,
"uvmet_wspd_wdir" : get_uvmet_wspd_wdir,
"uvmet10_wspd_wdir" : get_uvmet10_wspd_wdir,
"ctt" : get_ctt,
"cloudfrac" : get_cloudfrac
}
_VALID_KARGS = {"cape2d" : ["missing"],
"cape3d" : ["missing"],
"dbz" : ["do_variant", "do_liqskin"],
"maxdbz" : ["do_variant", "do_liqskin"],
"dp" : ["units"],
"dp2m" : ["units"],
"height" : ["msl", "units"],
"geopt" : [],
"srh" : ["top"],
"uhel" : ["bottom", "top"],
"omega" : [],
"pw" : [],
"rh" : [],
"rh2m" : [],
"slp" : ["units"],
"temp" : ["units"],
"tk" : [],
"tc" : [],
"theta" : ["units"],
"theta_e" : ["units"],
"tv" : ["units"],
"twb" : ["units"],
"terrain" : ["units"],
"times" : [],
"uvmet" : ["units"],
"uvmet10" : ["units"],
"avo" : [],
"pvo" : [],
"ua" : ["units"],
"va" : ["units"],
"wa" : ["units"],
"lat" : [],
"lon" : [],
"pres" : ["units"],
"pressure" : ["units"],
"wspd_wdir" : ["units"],
"wspd_wdir10" : ["units"],
"uvmet_wspd_wdir" : ["units"],
"uvmet10_wspd_wdir" : ["units"],
"ctt" : [],
"cloudfrac" : [],
"default" : []
}
_ALIASES = {"cape_2d" : "cape2d",
"cape_3d" : "cape3d",
"eth" : "theta_e",
"mdbz" : "maxdbz",
"geopotential" : "geopt",
"helicity" : "srh",
"latitude" : "lat",
"longitude" : "lon",
"omg" : "omega",
"p" : "pres",
"rh2" : "rh2m",
"z": "height",
"ter" : "terrain",
"updraft_helicity" : "uhel",
"td" : "dp",
"td2" : "dp2m",
"cfrac" : "cloudfrac",
"wspd_wdir_uvmet" : "uvmet_wspd_wdir",
"wspd_wdir_uvmet10" : "uvmet10_wspd_wdir"
}
class ArgumentError(Exception):
def __init__(self, msg):
self.msg = msg
def __str__(self):
return self.msg
def _undo_alias(alias):
actual = _ALIASES.get(alias, None)
if actual is None:
return alias
else:
return actual
def _check_kargs(var, kargs):
for arg in viewkeys(kargs):
if arg not in _VALID_KARGS[var]:
raise ValueError("'%s' is an invalid keyword "
"argument for '%s'" % (arg, var))
def getvar(wrfin, varname, timeidx=0,
method="cat", squeeze=True, cache=None, meta=True,
**kwargs):
"""Returns basic diagnostics from the WRF ARW model output.
A table of all available diagnostics is below.
.. include:: ../../_templates/product_table.txt
Args:
wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \
iterable): WRF-ARW NetCDF
data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile`
or an iterable sequence of the aforementioned types.
varname (:obj:`str`) : The variable name.
timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The
desired time index. This value can be a positive integer,
negative integer, or
:data:`wrf.ALL_TIMES` (an alias for None) to return
all times in the file or sequence. The default is 0.
method (:obj:`str`, optional): The aggregation method to use for
sequences. Must be either 'cat' or 'join'.
'cat' combines the data along the Time dimension.
'join' creates a new dimension for the file index.
The default is 'cat'.
squeeze (:obj:`bool`, optional): Set to False to prevent dimensions
with a size of 1 from being automatically removed from the shape
of the output. Default is True.
cache (:obj:`dict`, optional): A dictionary of (varname, ndarray)
that can be used to supply pre-extracted NetCDF variables to the
computational routines. It is primarily used for internal
purposes, but can also be used to improve performance by
eliminating the need to repeatedly extract the same variables
used in multiple diagnostics calculations, particularly when using
large sequences of files.
Default is None.
meta (:obj:`bool`, optional): Set to False to disable metadata and
return :class:`numpy.ndarray` instead of
:class:`xarray.DataArray`. Default is True.
**kwargs: Optional keyword arguments for certain diagnostics.
See table above.
Returns:
:class:`xarray.DataArray` or :class:`numpy.ndarray`: If xarray is
enabled and the *meta* parameter is True, then the result will be a
:class:`xarray.DataArray` object. Otherwise, the result will be a
:class:`numpy.ndarray` object with no metadata.
Raises:
:class:`ValueError`: Raised when an invalid diagnostic type or
keyword argument is passed to the routine.
:class:`FortranError`: Raised when a problem occurs during a Fortran
calculation.
See Also:
:class:`numpy.ndarray`, :class:`xarray.DataArray`
Examples:
Using netCDF4
.. code-block:: python
from netCDF4 import Dataset
from wrf import getvar
wrfnc = Dataset("wrfout_d02_2010-06-13_21:00:00")
slp = getvar(wrfnc, "slp")
Using PyNIO
.. code-block:: python
from Nio import open_file
from wrf import getvar
wrfnc = open_file("wrfout_d02_2010-06-13_21:00:00"+".nc", "r")
slp = getvar(wrfnc, "slp")
Using Iterables:
.. code-block:: python
import os
from netCDF4 import Dataset
from wrf import getvar
filedir = "/path/to/wrf/files"
wrfin = [Dataset(f) for f in os.listdir(filedir)
if f.startswith("wrfout_d02_")]
uvmet = getvar(wrfin, "uvmet", timeidx=3, units="kt")
"""
_key = get_id(wrfin)
wrfin = get_iterable(wrfin)
if is_standard_wrf_var(wrfin, varname) and varname != "Times":
return extract_vars(wrfin, timeidx, varname,
method, squeeze, cache, meta, _key)[varname]
elif varname == "Times":
varname = "times" # Diverting to the get_times routine
actual_var = _undo_alias(varname)
if actual_var not in _VALID_KARGS:
raise ValueError("'%s' is not a valid variable name" % (varname))
_check_kargs(actual_var, kwargs)
return _FUNC_MAP[actual_var](wrfin, timeidx, method, squeeze, cache,
meta, _key, **kwargs)