forked from 3rdparty/wrf-python
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
910 lines
36 KiB
910 lines
36 KiB
import unittest as ut |
|
import numpy.testing as nt |
|
import numpy as np |
|
import numpy.ma as ma |
|
import os, sys |
|
import subprocess |
|
import glob |
|
|
|
from wrf import (getvar, interplevel, interpline, vertcross, vinterp, |
|
disable_xarray, xarray_enabled, to_np, |
|
xy_to_ll, ll_to_xy, xy_to_ll_proj, ll_to_xy_proj, |
|
extract_global_attrs, viewitems, CoordPair, ll_points) |
|
from wrf.util import is_multi_file |
|
|
|
NCL_EXE = "/Users/ladwig/miniconda2/envs/ncl_build/bin/ncl" |
|
NCARG_ROOT = "/Users/ladwig/miniconda2/envs/ncl_build" |
|
#TEST_FILE = "/Users/ladwig/Documents/wrf_files/wrfout_d01_2010-06-13_21:00:00" |
|
DIR = "/Users/ladwig/Documents/wrf_files/wrf_vortex_multi" |
|
PATTERN = "wrfout_d02_*" |
|
REF_NC_FILE = "/tmp/wrftest.nc" |
|
|
|
# Python 3 |
|
if sys.version_info > (3,): |
|
xrange = range |
|
|
|
def setUpModule(): |
|
#ncarg_root = os.environ.get("NCARG_ROOT", None) |
|
#if ncarg_root is None: |
|
# raise RuntimeError("$NCARG_ROOT environment variable not set") |
|
|
|
os.environ["NCARG_ROOT"] = NCARG_ROOT |
|
os.environ["NCARG_NCARG"] = os.path.join(NCARG_ROOT, "lib", "ncarg") |
|
|
|
|
|
this_path = os.path.realpath(__file__) |
|
ncl_script = os.path.join(os.path.dirname(this_path), |
|
"ncl_get_var.ncl") |
|
|
|
cmd = "%s %s 'dir=\"%s\"' 'pattern=\"%s\"' 'out_file=\"%s\"'" % (NCL_EXE, |
|
ncl_script, |
|
DIR, |
|
PATTERN, |
|
REF_NC_FILE) |
|
|
|
print cmd |
|
|
|
if not os.path.exists(REF_NC_FILE): |
|
status = subprocess.call(cmd, shell=True) |
|
if (status != 0): |
|
raise RuntimeError("NCL script failed. Could not set up test.") |
|
|
|
# Using helpful information at: |
|
# http://eli.thegreenplace.net/2014/04/02/dynamically-generating-python-test-cases |
|
def make_test(varname, dir, pattern, referent, multi=False, pynio=False): |
|
def test(self): |
|
|
|
try: |
|
from netCDF4 import Dataset as NetCDF |
|
except: |
|
pass |
|
|
|
try: |
|
from PyNIO import Nio |
|
except: |
|
pass |
|
|
|
timeidx = 0 if not multi else None |
|
pat = os.path.join(dir, pattern) |
|
wrf_files = glob.glob(pat) |
|
wrf_files.sort() |
|
|
|
wrfin = [] |
|
for fname in wrf_files: |
|
if not pynio: |
|
f = NetCDF(fname) |
|
try: |
|
f.set_auto_mask(False) |
|
except: |
|
pass |
|
wrfin.append(f) |
|
else: |
|
if not fname.endswith(".nc"): |
|
_fname = fname + ".nc" |
|
else: |
|
_fname = fname |
|
f = Nio.open_file(_fname) |
|
wrfin.append(f) |
|
|
|
refnc = NetCDF(referent) |
|
try: |
|
refnc.set_auto_mask(False) |
|
except: |
|
pass |
|
|
|
# These have a left index that defines the product type |
|
multiproduct = varname in ("uvmet", "uvmet10", "cape_2d", "cape_3d", |
|
"cfrac") |
|
multi2d = ("uvmet10", "cape_2d", "cfrac") |
|
multi3d = ("uvmet", "cape_3d") |
|
|
|
# These varnames don't have NCL functions to test against |
|
ignore_referent = ("zstag", "geopt_stag") |
|
|
|
if varname not in ignore_referent: |
|
if not multi: |
|
if varname in multi2d: |
|
ref_vals = refnc.variables[varname][...,0,:,:] |
|
elif varname in multi3d: |
|
ref_vals = refnc.variables[varname][...,0,:,:,:] |
|
else: |
|
ref_vals = refnc.variables[varname][0,:] |
|
else: |
|
ref_vals = refnc.variables[varname][:] |
|
|
|
if (varname == "tc"): |
|
my_vals = getvar(wrfin, "temp", timeidx=timeidx, units="c") |
|
tol = 1/100. |
|
atol = .1 # Note: NCL uses 273.16 as conversion for some reason |
|
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol) |
|
elif (varname == "height_agl"): |
|
# Change the vert_type to height_agl when NCL gets updated. |
|
my_vals = getvar(wrfin, "z", timeidx=timeidx, msl=False) |
|
tol = 1/100. |
|
atol = .1 # Note: NCL uses 273.16 as conversion for some reason |
|
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol) |
|
elif (varname == "cfrac"): |
|
# Change the vert_type to height_agl when NCL gets updated. |
|
my_vals = getvar(wrfin, "cfrac", timeidx=timeidx) |
|
tol = 1/100. |
|
atol = .1 # Note: NCL uses 273.16 as conversion for some reason |
|
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol) |
|
elif (varname == "pw"): |
|
my_vals = getvar(wrfin, "pw", timeidx=timeidx) |
|
tol = .5/100.0 |
|
atol = 0 # NCL uses different constants and doesn't use same |
|
# handrolled virtual temp in method |
|
try: |
|
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol) |
|
except AssertionError: |
|
print (np.amax(np.abs(to_np(my_vals) - ref_vals))) |
|
raise |
|
elif (varname == "cape_2d"): |
|
cape_2d = getvar(wrfin, varname, timeidx=timeidx) |
|
tol = 0/100. |
|
atol = 200.0 |
|
# Let's only compare CAPE values until the F90 changes are |
|
# merged back in to NCL. The modifications to the R and CP |
|
# changes TK enough that non-lifting parcels could lift, thus |
|
# causing wildly different values in LCL |
|
nt.assert_allclose(to_np(cape_2d[0,:]), ref_vals[0,:], tol, atol) |
|
elif (varname == "cape_3d"): |
|
cape_3d = getvar(wrfin, varname, timeidx=timeidx) |
|
# Changing the R and CP constants, while keeping TK within |
|
# 2%, can lead to some big changes in CAPE. Tolerances |
|
# have been set wide when comparing the with the original |
|
# NCL. Change back when the F90 code is merged back with |
|
# NCL |
|
tol = 0/100. |
|
atol = 200.0 |
|
|
|
#print np.amax(np.abs(to_np(cape_3d[0,:]) - ref_vals[0,:])) |
|
nt.assert_allclose(to_np(cape_3d), ref_vals, tol, atol) |
|
elif (varname == "zstag" or varname == "geopt_stag"): |
|
v = getvar(wrfin, varname, timeidx=timeidx) |
|
# For now, only make sure it runs without crashing since no NCL |
|
# to compare with yet. |
|
else: |
|
my_vals = getvar(wrfin, varname, timeidx=timeidx) |
|
tol = 2/100. |
|
atol = 0.1 |
|
#print (np.amax(np.abs(to_np(my_vals) - ref_vals))) |
|
try: |
|
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol) |
|
except: |
|
absdiff = np.abs(to_np(my_vals) - ref_vals) |
|
maxdiff = np.amax(absdiff) |
|
print (maxdiff) |
|
print np.argwhere(absdiff == maxdiff) |
|
|
|
raise |
|
|
|
|
|
return test |
|
|
|
def _get_refvals(referent, varname, multi): |
|
try: |
|
from netCDF4 import Dataset as NetCDF |
|
except: |
|
pass |
|
|
|
refnc = NetCDF(referent) |
|
try: |
|
refnc.set_auto_mask(False) |
|
except: |
|
pass |
|
|
|
multi2d = ("uvmet10", "cape_2d", "cfrac") |
|
multi3d = ("uvmet", "cape_3d") |
|
|
|
if not multi: |
|
if varname in multi2d: |
|
ref_vals = refnc.variables[varname][...,0,:,:] |
|
elif varname in multi3d: |
|
ref_vals = refnc.variables[varname][...,0,:,:,:] |
|
else: |
|
v = refnc.variables[varname][:] |
|
if v.ndim == 2: |
|
ref_vals = v |
|
else: |
|
ref_vals = v[0,:] |
|
else: |
|
ref_vals = refnc.variables[varname][:] |
|
|
|
return ref_vals |
|
|
|
def make_interp_test(varname, dir, pattern, referent, multi=False, |
|
pynio=False): |
|
def test(self): |
|
try: |
|
from netCDF4 import Dataset as NetCDF |
|
except: |
|
pass |
|
|
|
try: |
|
from PyNIO import Nio |
|
except: |
|
pass |
|
|
|
timeidx = 0 if not multi else None |
|
pat = os.path.join(dir, pattern) |
|
wrf_files = glob.glob(pat) |
|
wrf_files.sort() |
|
|
|
wrfin = [] |
|
for fname in wrf_files: |
|
if not pynio: |
|
f = NetCDF(fname) |
|
try: |
|
f.set_auto_mask(False) |
|
except: |
|
pass |
|
wrfin.append(f) |
|
else: |
|
if not fname.endswith(".nc"): |
|
_fname = fname + ".nc" |
|
else: |
|
_fname = fname |
|
f = Nio.open_file(_fname) |
|
wrfin.append(f) |
|
|
|
if (varname == "interplevel"): |
|
ref_ht_500 = _get_refvals(referent, "z_500", multi) |
|
ref_p_5000 = _get_refvals(referent, "p_5000", multi) |
|
ref_ht_multi = _get_refvals(referent, "z_multi", multi) |
|
ref_p_multi = _get_refvals(referent, "p_multi", multi) |
|
|
|
ref_ht2_500 = _get_refvals(referent, "z2_500", multi) |
|
ref_p2_5000 = _get_refvals(referent, "p2_5000", multi) |
|
ref_ht2_multi = _get_refvals(referent, "z2_multi", multi) |
|
ref_p2_multi = _get_refvals(referent, "p2_multi", multi) |
|
|
|
ref_p_lev2d = _get_refvals(referent, "p_lev2d", multi) |
|
|
|
hts = getvar(wrfin, "z", timeidx=timeidx) |
|
p = getvar(wrfin, "pressure", timeidx=timeidx) |
|
wspd_wdir = getvar(wrfin, "wspd_wdir", timeidx=timeidx) |
|
|
|
# Make sure the numpy versions work first |
|
hts_500 = interplevel(to_np(hts), to_np(p), 500) |
|
hts_500 = interplevel(hts, p, 500) |
|
|
|
# Note: the '*2*' versions in the reference are testing |
|
# against the new version of interplevel in NCL |
|
nt.assert_allclose(to_np(hts_500), ref_ht_500) |
|
nt.assert_allclose(to_np(hts_500), ref_ht2_500) |
|
|
|
# Make sure the numpy versions work first |
|
p_5000 = interplevel(to_np(p), to_np(hts), 5000) |
|
p_5000 = interplevel(p, hts, 5000) |
|
|
|
|
|
nt.assert_allclose(to_np(p_5000), ref_p_5000) |
|
nt.assert_allclose(to_np(p_5000), ref_p2_5000) |
|
|
|
hts_multi= interplevel(to_np(hts), to_np(p), |
|
[1000., 850., 500., 250.]) |
|
hts_multi = interplevel(hts, p, [1000., 850., 500., 250.]) |
|
|
|
nt.assert_allclose(to_np(hts_multi), ref_ht_multi) |
|
nt.assert_allclose(to_np(hts_multi), ref_ht2_multi) |
|
|
|
p_multi= interplevel(to_np(p), to_np(hts), |
|
[500., 2500., 5000., 10000. ]) |
|
p_multi = interplevel(p, hts, [500., 2500., 5000., 10000. ]) |
|
|
|
nt.assert_allclose(to_np(p_multi), ref_p_multi) |
|
nt.assert_allclose(to_np(p_multi), ref_p2_multi) |
|
|
|
pblh = getvar(wrfin, "PBLH", timeidx=timeidx) |
|
p_lev2d = interplevel(to_np(p), to_np(hts), to_np(pblh)) |
|
p_lev2d = interplevel(p, hts, pblh) |
|
nt.assert_allclose(to_np(p_lev2d), ref_p_lev2d) |
|
|
|
# Just make sure these run below |
|
wspd_wdir_500 = interplevel(to_np(wspd_wdir), to_np(p), 500) |
|
wspd_wdir_500 = interplevel(wspd_wdir, p, 500) |
|
#print(wspd_wdir_500) |
|
|
|
wspd_wdir_multi= interplevel(to_np(wspd_wdir), |
|
to_np(p), [1000,500,250]) |
|
wdpd_wdir_multi = interplevel(wspd_wdir, p, [1000,500,250]) |
|
|
|
|
|
wspd_wdir_pblh = interplevel(to_np(wspd_wdir), to_np(hts), pblh) |
|
wspd_wdir_pblh = interplevel(wspd_wdir, hts, pblh) |
|
|
|
if multi: |
|
wspd_wdir_pblh_2 = interplevel(to_np(wspd_wdir), |
|
to_np(hts), pblh[0,:]) |
|
wspd_wdir_pblh_2 = interplevel(wspd_wdir, hts, pblh[0,:]) |
|
|
|
# Since PBLH doesn't change in this case, it should match |
|
# the 0 time from previous computation. Note that this |
|
# only works when the data has 1 time step that is repeated. |
|
# If you use a different case with multiple times, |
|
# this will probably fail. |
|
nt.assert_allclose(to_np(wspd_wdir_pblh_2[:,0,:]), |
|
to_np(wspd_wdir_pblh[:,0,:])) |
|
|
|
nt.assert_allclose(to_np(wspd_wdir_pblh_2[:,-1,:]), |
|
to_np(wspd_wdir_pblh[:,0,:])) |
|
|
|
|
|
elif (varname == "vertcross"): |
|
ref_ht_cross = _get_refvals(referent, "ht_cross", multi) |
|
ref_p_cross = _get_refvals(referent, "p_cross", multi) |
|
ref_ht_vertcross1 = _get_refvals(referent, "ht_vertcross1", |
|
multi) |
|
ref_ht_vertcross2 = _get_refvals(referent, "ht_vertcross2", |
|
multi) |
|
ref_ht_vertcross3 = _get_refvals(referent, "ht_vertcross3", |
|
multi) |
|
|
|
hts = getvar(wrfin, "z", timeidx=timeidx) |
|
p = getvar(wrfin, "pressure", timeidx=timeidx) |
|
|
|
pivot_point = CoordPair(hts.shape[-1] / 2, hts.shape[-2] / 2) |
|
|
|
# Beginning in wrf-python 1.3, users can select number of levels. |
|
# Originally, for pressure, dz was 10, so let's back calculate |
|
# the number of levels. |
|
p_max = np.floor(np.amax(p)/10) * 10 # bottom value |
|
p_min = np.ceil(np.amin(p)/10) * 10 # top value |
|
|
|
p_autolevels = int((p_max - p_min) /10) |
|
|
|
# Make sure the numpy versions work first |
|
|
|
ht_cross = vertcross(to_np(hts), to_np(p), |
|
pivot_point=pivot_point, angle=90., |
|
autolevels=p_autolevels) |
|
ht_cross = vertcross(hts, p, pivot_point=pivot_point, angle=90., |
|
autolevels=p_autolevels) |
|
|
|
nt.assert_allclose(to_np(ht_cross), ref_ht_cross, rtol=.01) |
|
|
|
# Test the manual projection method with lat/lon |
|
lats = hts.coords["XLAT"] |
|
lons = hts.coords["XLONG"] |
|
ll_point = ll_points(lats, lons) |
|
pivot = CoordPair(lat=lats[int(lats.shape[-2]/2), |
|
int(lats.shape[-1]/2)], |
|
lon=lons[int(lons.shape[-2]/2), |
|
int(lons.shape[-1]/2)]) |
|
|
|
v1 = vertcross(hts,p,wrfin,pivot_point=pivot_point, |
|
angle=90.0) |
|
v2 = vertcross(hts,p,projection=hts.attrs["projection"], |
|
ll_point=ll_point, |
|
pivot_point=pivot_point, angle=90.) |
|
|
|
nt.assert_allclose(to_np(v1), to_np(v2), rtol=.01) |
|
|
|
# Test opposite |
|
|
|
p_cross1 = vertcross(p,hts,pivot_point=pivot_point, angle=90.0) |
|
|
|
nt.assert_allclose(to_np(p_cross1), |
|
ref_p_cross, |
|
rtol=.01) |
|
# Test point to point |
|
start_point = CoordPair(0, hts.shape[-2]/2) |
|
end_point = CoordPair(-1,hts.shape[-2]/2) |
|
|
|
|
|
p_cross2 = vertcross(p,hts,start_point=start_point, |
|
end_point=end_point) |
|
|
|
nt.assert_allclose(to_np(p_cross1), |
|
to_np(p_cross2)) |
|
|
|
# Check the new vertcross routine |
|
pivot_point = CoordPair(hts.shape[-1] / 2, hts.shape[-2] / 2) |
|
ht_cross = vertcross(hts, p, |
|
pivot_point=pivot_point, angle=90., |
|
latlon=True) |
|
|
|
nt.assert_allclose(to_np(ht_cross), |
|
to_np(ref_ht_vertcross1), atol=.01) |
|
|
|
|
|
|
|
levels = [1000., 850., 700., 500., 250.] |
|
ht_cross = vertcross(hts, p, |
|
pivot_point=pivot_point, angle=90., |
|
levels=levels, latlon=True) |
|
|
|
nt.assert_allclose(to_np(ht_cross), |
|
to_np(ref_ht_vertcross2), atol=.01) |
|
|
|
|
|
start_lat = np.amin(lats) + .25*(np.amax(lats) - np.amin(lats)) |
|
end_lat = np.amin(lats) + .75*(np.amax(lats) - np.amin(lats)) |
|
|
|
start_lon = np.amin(lons) + .25*(np.amax(lons) - np.amin(lons)) |
|
end_lon = np.amin(lons) + .75*(np.amax(lons) - np.amin(lons)) |
|
|
|
start_point = CoordPair(lat=start_lat, lon=start_lon) |
|
end_point = CoordPair(lat=end_lat, lon=end_lon) |
|
|
|
# ll_point and projection came from above |
|
ht_cross = vertcross(hts, p, |
|
start_point=start_point, |
|
end_point=end_point, |
|
projection=hts.attrs["projection"], |
|
ll_point=ll_point, |
|
latlon=True, |
|
autolevels=1000) |
|
|
|
|
|
nt.assert_allclose(to_np(ht_cross), |
|
to_np(ref_ht_vertcross3), |
|
rtol=.01) |
|
|
|
|
|
elif (varname == "interpline"): |
|
|
|
ref_t2_line = _get_refvals(referent, "t2_line", multi) |
|
|
|
t2 = getvar(wrfin, "T2", timeidx=timeidx) |
|
pivot_point = CoordPair(t2.shape[-1] / 2, t2.shape[-2] / 2) |
|
|
|
# Make sure the numpy version works |
|
t2_line1 = interpline(to_np(t2), pivot_point=pivot_point, |
|
angle=90.0) |
|
t2_line1 = interpline(t2, pivot_point=pivot_point, angle=90.0) |
|
|
|
nt.assert_allclose(to_np(t2_line1), ref_t2_line) |
|
|
|
# Test the manual projection method with lat/lon |
|
lats = t2.coords["XLAT"] |
|
lons = t2.coords["XLONG"] |
|
if multi: |
|
lats = lats[0,:] |
|
lons = lons[0,:] |
|
|
|
ll_point = ll_points(lats, lons) |
|
|
|
pivot = CoordPair(lat=lats[int(lats.shape[-2]/2), |
|
int(lats.shape[-1]/2)], |
|
lon=lons[int(lons.shape[-2]/2), |
|
int(lons.shape[-1]/2)]) |
|
l1 = interpline(t2,wrfin,pivot_point=pivot_point, |
|
angle=90.0) |
|
l2 = interpline(t2,projection=t2.attrs["projection"], |
|
ll_point=ll_point, |
|
pivot_point=pivot_point, angle=90.) |
|
nt.assert_allclose(to_np(l1), to_np(l2), rtol=.01) |
|
|
|
# Test point to point |
|
start_point = CoordPair(0, t2.shape[-2]/2) |
|
end_point = CoordPair(-1, t2.shape[-2]/2) |
|
|
|
t2_line2 = interpline(t2, start_point=start_point, |
|
end_point=end_point) |
|
|
|
nt.assert_allclose(to_np(t2_line1), to_np(t2_line2)) |
|
elif (varname == "vinterp"): |
|
# Tk to theta |
|
fld_tk_theta = _get_refvals(referent, "fld_tk_theta", multi) |
|
fld_tk_theta = np.squeeze(fld_tk_theta) |
|
|
|
tk = getvar(wrfin, "temp", timeidx=timeidx, units="k") |
|
|
|
interp_levels = [200,300,500,1000] |
|
|
|
# Make sure the numpy version works |
|
field = vinterp(wrfin, |
|
field=to_np(tk), |
|
vert_coord="theta", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = vinterp(wrfin, |
|
field=tk, |
|
vert_coord="theta", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
tol = 5/100. |
|
atol = 0.0001 |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_tk_theta))) |
|
nt.assert_allclose(to_np(field), fld_tk_theta, tol, atol) |
|
|
|
# Tk to theta-e |
|
fld_tk_theta_e = _get_refvals(referent, "fld_tk_theta_e", multi) |
|
fld_tk_theta_e = np.squeeze(fld_tk_theta_e) |
|
|
|
interp_levels = [200,300,500,1000] |
|
|
|
field = vinterp(wrfin, |
|
field=tk, |
|
vert_coord="theta-e", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
tol = 3/100. |
|
atol = 50.0001 |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_tk_theta_e)/fld_tk_theta_e)*100) |
|
nt.assert_allclose(to_np(field), fld_tk_theta_e, tol, atol) |
|
|
|
# Tk to pressure |
|
fld_tk_pres = _get_refvals(referent, "fld_tk_pres", multi) |
|
fld_tk_pres = np.squeeze(fld_tk_pres) |
|
|
|
interp_levels = [850,500] |
|
|
|
field = vinterp(wrfin, |
|
field=tk, |
|
vert_coord="pressure", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
|
|
#print (np.amax(np.abs(to_np(field) - fld_tk_pres))) |
|
nt.assert_allclose(to_np(field), fld_tk_pres, tol, atol) |
|
|
|
# Tk to geoht_msl |
|
fld_tk_ght_msl = _get_refvals(referent, "fld_tk_ght_msl", multi) |
|
fld_tk_ght_msl = np.squeeze(fld_tk_ght_msl) |
|
interp_levels = [1,2] |
|
|
|
field = vinterp(wrfin, |
|
field=tk, |
|
vert_coord="ght_msl", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_tk_ght_msl))) |
|
nt.assert_allclose(to_np(field), fld_tk_ght_msl, tol, atol) |
|
|
|
# Tk to geoht_agl |
|
fld_tk_ght_agl = _get_refvals(referent, "fld_tk_ght_agl", multi) |
|
fld_tk_ght_agl = np.squeeze(fld_tk_ght_agl) |
|
interp_levels = [1,2] |
|
|
|
field = vinterp(wrfin, |
|
field=tk, |
|
vert_coord="ght_agl", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="tk", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_tk_ght_agl))) |
|
nt.assert_allclose(to_np(field), fld_tk_ght_agl, tol, atol) |
|
|
|
# Hgt to pressure |
|
fld_ht_pres = _get_refvals(referent, "fld_ht_pres", multi) |
|
fld_ht_pres = np.squeeze(fld_ht_pres) |
|
|
|
z = getvar(wrfin, "height", timeidx=timeidx, units="m") |
|
interp_levels = [500,50] |
|
field = vinterp(wrfin, |
|
field=z, |
|
vert_coord="pressure", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="ght", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_ht_pres))) |
|
nt.assert_allclose(to_np(field), fld_ht_pres, tol, atol) |
|
|
|
# Pressure to theta |
|
fld_pres_theta = _get_refvals(referent, "fld_pres_theta", multi) |
|
fld_pres_theta = np.squeeze(fld_pres_theta) |
|
|
|
p = getvar(wrfin, "pressure", timeidx=timeidx) |
|
interp_levels = [200,300,500,1000] |
|
field = vinterp(wrfin, |
|
field=p, |
|
vert_coord="theta", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="pressure", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_pres_theta))) |
|
nt.assert_allclose(to_np(field), fld_pres_theta, tol, atol) |
|
|
|
# Theta-e to pres |
|
fld_thetae_pres = _get_refvals(referent, "fld_thetae_pres", multi) |
|
fld_thetae_pres = np.squeeze(fld_thetae_pres) |
|
|
|
eth = getvar(wrfin, "eth", timeidx=timeidx) |
|
interp_levels = [850,500,5] |
|
field = vinterp(wrfin, |
|
field=eth, |
|
vert_coord="pressure", |
|
interp_levels=interp_levels, |
|
extrapolate=True, |
|
field_type="theta-e", |
|
timeidx=timeidx, |
|
log_p=True) |
|
|
|
field = np.squeeze(field) |
|
#print (np.amax(np.abs(to_np(field) - fld_thetae_pres))) |
|
nt.assert_allclose(to_np(field), fld_thetae_pres, tol, atol) |
|
|
|
return test |
|
|
|
def extract_proj_params(wrfnc, timeidx=0): |
|
attrs = extract_global_attrs(wrfnc, ("MAP_PROJ", "TRUELAT1", "TRUELAT2", |
|
"STAND_LON", "POLE_LAT", "POLE_LON", |
|
"DX", "DY")) |
|
|
|
result = {key.lower(): val for key,val in viewitems(attrs)} |
|
|
|
_timeidx = timeidx |
|
if is_multi_file(wrfnc): |
|
wrfnc0 = wrfnc[0] |
|
num_times_per_file = len(wrfnc0.dimensions["Time"]) |
|
file_idx = timeidx // num_times_per_file |
|
_timeidx = timeidx % num_times_per_file |
|
|
|
wrfnc = wrfnc[file_idx] |
|
|
|
result["known_x"] = 0 |
|
result["known_y"] = 0 |
|
result["ref_lat"] = wrfnc.variables["XLAT"][_timeidx,0,0] |
|
result["ref_lon"] = wrfnc.variables["XLONG"][_timeidx,0,0] |
|
|
|
return result |
|
|
|
def make_latlon_test(testid, dir, pattern, referent, single, |
|
multi=False, pynio=False): |
|
def test(self): |
|
try: |
|
from netCDF4 import Dataset as NetCDF |
|
except: |
|
pass |
|
|
|
try: |
|
from PyNIO import Nio |
|
except: |
|
pass |
|
|
|
timeidx = 0 if not multi else None |
|
pat = os.path.join(dir, pattern) |
|
wrf_files = glob.glob(pat) |
|
wrf_files.sort() |
|
|
|
refnc = NetCDF(referent) |
|
try: |
|
refnc.set_auto_mask(False) |
|
except: |
|
pass |
|
|
|
wrfin = [] |
|
for fname in wrf_files: |
|
if not pynio: |
|
f = NetCDF(fname) |
|
try: |
|
f.set_auto_mask(False) |
|
except: |
|
pass |
|
wrfin.append(f) |
|
else: |
|
if not fname.endswith(".nc"): |
|
_fname = fname + ".nc" |
|
else: |
|
_fname = fname |
|
f = Nio.open_file(_fname) |
|
wrfin.append(f) |
|
|
|
if testid == "xy": |
|
|
|
# Lats/Lons taken from NCL script, just hard-coding for now |
|
lats = [22.0, 25.0, 27.0] |
|
lons = [-90.0, -87.5, -83.75] |
|
|
|
# Just call with a single lat/lon |
|
if single: |
|
timeidx = 8 |
|
ref_vals = refnc.variables["xy2"][:] |
|
|
|
xy = ll_to_xy(wrfin, lats[0], lons[0], timeidx=timeidx, |
|
as_int=True) |
|
ref = ref_vals[:,0] |
|
|
|
nt.assert_allclose(to_np(xy), ref) |
|
|
|
# Next make sure the 'proj' version works |
|
projparams = extract_proj_params(wrfin, timeidx=timeidx) |
|
xy_proj = ll_to_xy_proj(lats[0], lons[0], |
|
as_int=True, |
|
**projparams) |
|
|
|
nt.assert_allclose(to_np(xy_proj), to_np(xy)) |
|
|
|
|
|
else: |
|
ref_vals = refnc.variables["xy1"][:] |
|
xy = ll_to_xy(wrfin, lats, lons, timeidx=None, as_int=False) |
|
|
|
ref = ref_vals[:] |
|
|
|
nt.assert_allclose(to_np(xy), ref) |
|
|
|
for tidx in range(9): |
|
|
|
# Next make sure the 'proj' version works |
|
projparams = extract_proj_params(wrfin, timeidx=tidx) |
|
xy_proj = ll_to_xy_proj(lats, lons, as_int=False, |
|
**projparams) |
|
|
|
nt.assert_allclose(to_np(xy_proj), to_np(xy[:,tidx,:])) |
|
|
|
else: |
|
# i_s, j_s taken from NCL script, just hard-coding for now |
|
# NCL uses 1-based indexing for this, so need to subtract 1 |
|
x_s = np.asarray([10, 50, 90], int) |
|
y_s = np.asarray([10, 50, 90], int) |
|
|
|
if single: |
|
timeidx=8 |
|
ref_vals = refnc.variables["ll2"][:] |
|
ll = xy_to_ll(wrfin, x_s[0], y_s[0], timeidx=timeidx) |
|
ref = ref_vals[::-1,0] |
|
|
|
nt.assert_allclose(to_np(ll), ref) |
|
|
|
# Next make sure the 'proj' version works |
|
projparams = extract_proj_params(wrfin, timeidx=8) |
|
ll_proj = xy_to_ll_proj(x_s[0], y_s[0], **projparams) |
|
|
|
nt.assert_allclose(to_np(ll_proj), to_np(ll)) |
|
else: |
|
ref_vals = refnc.variables["ll1"][:] |
|
ll = xy_to_ll(wrfin, x_s, y_s, timeidx=None) |
|
ref = ref_vals[::-1,:] |
|
|
|
nt.assert_allclose(to_np(ll), ref) |
|
|
|
|
|
for tidx in range(9): |
|
# Next make sure the 'proj' version works |
|
projparams = extract_proj_params(wrfin, timeidx=tidx) |
|
ll_proj = xy_to_ll_proj(x_s, y_s, **projparams) |
|
|
|
nt.assert_allclose(to_np(ll_proj), to_np(ll[:,tidx,:])) |
|
|
|
return test |
|
|
|
class WRFVarsTest(ut.TestCase): |
|
longMessage = True |
|
|
|
class WRFInterpTest(ut.TestCase): |
|
longMessage = True |
|
|
|
class WRFLatLonTest(ut.TestCase): |
|
longMessage = True |
|
|
|
|
|
if __name__ == "__main__": |
|
from wrf import (omp_set_num_threads, omp_set_schedule, omp_get_schedule, |
|
omp_set_dynamic, omp_get_num_procs, OMP_SCHED_STATIC) |
|
omp_set_num_threads(omp_get_num_procs()//2) |
|
omp_set_schedule(OMP_SCHED_STATIC, 0) |
|
omp_set_dynamic(False) |
|
|
|
ignore_vars = [] # Not testable yet |
|
wrf_vars = ["avo", "eth", "cape_2d", "cape_3d", "ctt", "dbz", "mdbz", |
|
"geopt", "helicity", "lat", "lon", "omg", "p", "pressure", |
|
"pvo", "pw", "rh2", "rh", "slp", "ter", "td2", "td", "tc", |
|
"theta", "tk", "tv", "twb", "updraft_helicity", "ua", "va", |
|
"wa", "uvmet10", "uvmet", "z", "cfrac", "zstag", "geopt_stag", |
|
"height_agl"] |
|
interp_methods = ["interplevel", "vertcross", "interpline", "vinterp"] |
|
latlon_tests = ["xy", "ll"] |
|
|
|
try: |
|
import netCDF4 |
|
except ImportError: |
|
pass |
|
else: |
|
for var in wrf_vars: |
|
if var in ignore_vars: |
|
continue |
|
|
|
test_func1 = make_test(var, DIR, PATTERN, REF_NC_FILE) |
|
test_func2 = make_test(var, DIR, PATTERN, REF_NC_FILE, multi=True) |
|
setattr(WRFVarsTest, 'test_{0}'.format(var), test_func1) |
|
setattr(WRFVarsTest, 'test_multi_{0}'.format(var), test_func2) |
|
|
|
for method in interp_methods: |
|
test_interp_func1 = make_interp_test(method, DIR, PATTERN, |
|
REF_NC_FILE) |
|
test_interp_func2 = make_interp_test(method, DIR, PATTERN, |
|
REF_NC_FILE, multi=True) |
|
setattr(WRFInterpTest, 'test_{0}'.format(method), |
|
test_interp_func1) |
|
setattr(WRFInterpTest, 'test_multi_{0}'.format(method), |
|
test_interp_func2) |
|
|
|
for testid in latlon_tests: |
|
for single in (True, False): |
|
for multi in (True, False): |
|
test_ll_func = make_latlon_test(testid, DIR, PATTERN, |
|
REF_NC_FILE, |
|
single=single, |
|
multi=multi, |
|
pynio=False) |
|
multistr = "" if not multi else "_multi" |
|
singlestr = "_nosingle" if not single else "_single" |
|
test_name = "test_{}{}{}".format(testid, singlestr, |
|
multistr) |
|
setattr(WRFLatLonTest, test_name, test_ll_func) |
|
|
|
try: |
|
import PyNIO |
|
except ImportError: |
|
pass |
|
else: |
|
for var in wrf_vars: |
|
if var in ignore_vars: |
|
continue |
|
|
|
test_func1 = make_test(var, DIR, PATTERN, REF_NC_FILE, pynio=True) |
|
test_func2 = make_test(var, DIR, PATTERN, REF_NC_FILE, multi=True, |
|
pynio=True) |
|
setattr(WRFVarsTest, 'test_pynio_{0}'.format(var), test_func1) |
|
setattr(WRFVarsTest, 'test_pynio_multi_{0}'.format(var), |
|
test_func2) |
|
|
|
for method in interp_methods: |
|
test_interp_func1 = make_interp_test(method, DIR, PATTERN, |
|
REF_NC_FILE) |
|
test_interp_func2 = make_interp_test(method, DIR, PATTERN, |
|
REF_NC_FILE, multi=True) |
|
setattr(WRFInterpTest, 'test_pynio_{0}'.format(method), |
|
test_interp_func1) |
|
setattr(WRFInterpTest, 'test_pynio_multi_{0}'.format(method), |
|
test_interp_func2) |
|
|
|
for testid in latlon_tests: |
|
for single in (True, False): |
|
for multi in (True, False): |
|
test_ll_func = make_latlon_test(testid, DIR, PATTERN, |
|
REF_NC_FILE, |
|
single=single, |
|
multi=multi, |
|
pynio=False) |
|
multistr = "" if not multi else "_multi" |
|
singlestr = "_nosingle" if not single else "_single" |
|
test_name = "test_pynio_{}{}{}".format(testid, |
|
singlestr, |
|
multistr) |
|
setattr(WRFLatLonTest, test_name, test_ll_func) |
|
|
|
ut.main() |
|
|