A collection of diagnostic and interpolation routines for use with output from the Weather Research and Forecasting (WRF-ARW) Model.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

772 lines
31 KiB

import unittest as ut
import numpy.testing as nt
import numpy as np
import numpy.ma as ma
import os, sys
import subprocess
from wrf import (getvar, interplevel, interpline, vertcross, vinterp,
disable_xarray, xarray_enabled, to_np,
xy_to_ll, ll_to_xy, xy_to_ll_proj, ll_to_xy_proj,
extract_global_attrs, viewitems, CoordPair, ll_points)
from wrf.util import is_multi_file
NCL_EXE = "/Users/ladwig/nclbuild/6.3.0/bin/ncl"
TEST_FILE = "/Users/ladwig/Documents/wrf_files/wrfout_d01_2010-06-13_21:00:00"
OUT_NC_FILE = "/tmp/wrftest.nc"
# Python 3
if sys.version_info > (3,):
xrange = range
def setUpModule():
ncarg_root = os.environ.get("NCARG_ROOT", None)
if ncarg_root is None:
raise RuntimeError("$NCARG_ROOT environment variable not set")
this_path = os.path.realpath(__file__)
ncl_script = os.path.join(os.path.dirname(this_path),
"ncl_get_var.ncl")
ncfile = TEST_FILE + ".nc" # NCL requires extension
# This needs to be set when PyNIO is installed, since PyNIOs data does
# not contain the dat file for the CAPE calcluations
os.environ["NCARG_NCARG"] = os.path.join(os.environ["NCARG_ROOT"],
"lib", "ncarg")
cmd = "%s %s 'in_file=\"%s\"' 'out_file=\"%s\"'" % (NCL_EXE,
ncl_script,
ncfile,
OUT_NC_FILE)
#print cmd
if not os.path.exists(OUT_NC_FILE):
status = subprocess.call(cmd, shell=True)
if (status != 0):
raise RuntimeError("NCL script failed. Could not set up test.")
# Using helpful information at:
# http://eli.thegreenplace.net/2014/04/02/dynamically-generating-python-test-cases
def make_test(varname, wrf_in, referent, multi=False, repeat=3, pynio=False):
def test(self):
try:
from netCDF4 import Dataset as NetCDF
except:
pass
try:
from PyNIO import Nio
except:
pass
if not multi:
timeidx = 0
if not pynio:
in_wrfnc = NetCDF(wrf_in)
else:
# Note: Python doesn't like it if you reassign an outer scoped
# variable (wrf_in in this case)
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
in_wrfnc = Nio.open_file(wrf_file)
else:
timeidx = None
if not pynio:
nc = NetCDF(wrf_in)
in_wrfnc = [nc for i in xrange(repeat)]
else:
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
nc = Nio.open_file(wrf_file)
in_wrfnc = [nc for i in xrange(repeat)]
refnc = NetCDF(referent)
# These have a left index that defines the product type
multiproduct = varname in ("uvmet", "uvmet10", "cape_2d", "cape_3d",
"cfrac")
# These varnames don't have NCL functions to test against
ignore_referent = ("zstag", "geopt_stag")
if varname not in ignore_referent:
if not multi:
ref_vals = refnc.variables[varname][:]
else:
data = refnc.variables[varname][:]
if (varname != "uvmet" and varname != "uvmet10"
and varname != "cape_2d" and varname != "cape_3d"):
new_dims = [repeat] + [x for x in data.shape]
elif (varname == "uvmet" or varname == "uvmet10"
or varname == "cape_3d"):
new_dims = [2] + [repeat] + [x for x in data.shape[1:]]
elif (varname == "cape_2d"):
new_dims = [4] + [repeat] + [x for x in data.shape[1:]]
elif (varname == "cfrac"):
new_dims = [3] + [repeat] + [x for x in data.shape[1:]]
masked=False
if (isinstance(data, ma.core.MaskedArray)):
masked=True
if not masked:
ref_vals = np.zeros(new_dims, data.dtype)
else:
ref_vals = ma.asarray(np.zeros(new_dims, data.dtype))
for i in xrange(repeat):
if not multiproduct:
ref_vals[i,:] = data[:]
if masked:
ref_vals.mask[i,:] = data.mask[:]
else:
for prod in xrange(ref_vals.shape[0]):
ref_vals[prod,i,:] = data[prod,:]
if masked:
ref_vals.mask[prod,i,:] = data.mask[prod,:]
if (varname == "tc"):
my_vals = getvar(in_wrfnc, "temp", timeidx=timeidx, units="c")
tol = 1/100.
atol = .1 # Note: NCL uses 273.16 as conversion for some reason
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol)
elif (varname == "cfrac"):
# Change the vert_type to height_agl when NCL gets updated.
my_vals = getvar(in_wrfnc, "cfrac", timeidx=timeidx,
vert_type="pres")
tol = 1/100.
atol = .1 # Note: NCL uses 273.16 as conversion for some reason
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol)
elif (varname == "pw"):
my_vals = getvar(in_wrfnc, "pw", timeidx=timeidx)
tol = .5/100.0
atol = 0 # NCL uses different constants and doesn't use same
# handrolled virtual temp in method
try:
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol)
except AssertionError:
print (np.amax(np.abs(to_np(my_vals) - ref_vals)))
raise
elif (varname == "cape_2d"):
cape_2d = getvar(in_wrfnc, varname, timeidx=timeidx)
tol = 0/100.
atol = 200.0
# Let's only compare CAPE values until the F90 changes are
# merged back in to NCL. The modifications to the R and CP
# changes TK enough that non-lifting parcels could lift, thus
# causing wildly different values in LCL
nt.assert_allclose(to_np(cape_2d[0,:]), ref_vals[0,:], tol, atol)
elif (varname == "cape_3d"):
cape_3d = getvar(in_wrfnc, varname, timeidx=timeidx)
# Changing the R and CP constants, while keeping TK within
# 2%, can lead to some big changes in CAPE. Tolerances
# have been set wide when comparing the with the original
# NCL. Change back when the F90 code is merged back with
# NCL
tol = 0/100.
atol = 200.0
#print np.amax(np.abs(to_np(cape_3d[0,:]) - ref_vals[0,:]))
nt.assert_allclose(to_np(cape_3d), ref_vals, tol, atol)
elif (varname == "zstag" or varname == "geopt_stag"):
v = getvar(in_wrfnc, varname, timeidx=timeidx)
# For now, only make sure it runs without crashing since no NCL
# to compare with yet.
else:
my_vals = getvar(in_wrfnc, varname, timeidx=timeidx)
tol = 2/100.
atol = 0.1
#print (np.amax(np.abs(to_np(my_vals) - ref_vals)))
try:
nt.assert_allclose(to_np(my_vals), ref_vals, tol, atol)
except:
print (np.amax(np.abs(to_np(my_vals) - ref_vals)))
raise
return test
def _get_refvals(referent, varname, repeat, multi):
try:
from netCDF4 import Dataset as NetCDF
except:
pass
refnc = NetCDF(referent)
if not multi:
ref_vals = refnc.variables[varname][:]
else:
data = refnc.variables[varname][:]
new_dims = [repeat] + [x for x in data.shape]
masked=False
if (isinstance(data, ma.core.MaskedArray)):
masked=True
if not masked:
ref_vals = np.zeros(new_dims, data.dtype)
else:
ref_vals = ma.asarray(np.zeros(new_dims, data.dtype))
for i in xrange(repeat):
ref_vals[i,:] = data[:]
if masked:
ref_vals.mask[i,:] = data.mask[:]
return ref_vals
def make_interp_test(varname, wrf_in, referent, multi=False,
repeat=3, pynio=False):
def test(self):
try:
from netCDF4 import Dataset as NetCDF
except:
pass
try:
from PyNIO import Nio
except:
pass
if not multi:
timeidx = 0
if not pynio:
in_wrfnc = NetCDF(wrf_in)
else:
# Note: Python doesn't like it if you reassign an outer scoped
# variable (wrf_in in this case)
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
in_wrfnc = Nio.open_file(wrf_file)
else:
timeidx = None
if not pynio:
nc = NetCDF(wrf_in)
in_wrfnc = [nc for i in xrange(repeat)]
else:
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
nc = Nio.open_file(wrf_file)
in_wrfnc = [nc for i in xrange(repeat)]
if (varname == "interplevel"):
ref_ht_500 = _get_refvals(referent, "z_500", repeat, multi)
hts = getvar(in_wrfnc, "z", timeidx=timeidx)
p = getvar(in_wrfnc, "pressure", timeidx=timeidx)
# Make sure the numpy versions work first
hts_500 = interplevel(to_np(hts), to_np(p), 500)
hts_500 = interplevel(hts, p, 500)
nt.assert_allclose(to_np(hts_500), ref_ht_500)
elif (varname == "vertcross"):
ref_ht_cross = _get_refvals(referent, "ht_cross", repeat, multi)
ref_p_cross = _get_refvals(referent, "p_cross", repeat, multi)
hts = getvar(in_wrfnc, "z", timeidx=timeidx)
p = getvar(in_wrfnc, "pressure", timeidx=timeidx)
pivot_point = CoordPair(hts.shape[-1] / 2, hts.shape[-2] / 2)
#ht_cross = vertcross(to_np(hts), p, pivot_point=pivot_point,
# angle=90., latlon=True)
# Make sure the numpy versions work first
ht_cross = vertcross(to_np(hts), to_np(p),
pivot_point=pivot_point, angle=90.)
ht_cross = vertcross(hts, p, pivot_point=pivot_point, angle=90.)
# Note: Until the bug is fixed in NCL, the wrf-python cross
# sections will contain one extra point
nt.assert_allclose(to_np(ht_cross)[...,0:-1], ref_ht_cross,
rtol=.01)
# Test the manual projection method with lat/lon
lats = hts.coords["XLAT"]
lons = hts.coords["XLONG"]
ll_point = ll_points(lats, lons)
pivot = CoordPair(lat=lats[lats.shape[-2]/2, lats.shape[-1]/2],
lon=lons[lons.shape[-2]/2, lons.shape[-1]/2])
v1 = vertcross(hts,p,wrfin=in_wrfnc,pivot_point=pivot_point,
angle=90.0)
v2 = vertcross(hts,p,projection=hts.attrs["projection"],
ll_point=ll_point,
pivot_point=pivot_point, angle=90.)
nt.assert_allclose(to_np(v1), to_np(v2), rtol=.01)
# Test opposite
p_cross1 = vertcross(p,hts,pivot_point=pivot_point, angle=90.0)
nt.assert_allclose(to_np(p_cross1)[...,0:-1],
ref_p_cross,
rtol=.01)
# Test point to point
start_point = CoordPair(0, hts.shape[-2]/2)
end_point = CoordPair(-1,hts.shape[-2]/2)
p_cross2 = vertcross(p,hts,start_point=start_point,
end_point=end_point)
nt.assert_allclose(to_np(p_cross1),
to_np(p_cross2))
elif (varname == "interpline"):
ref_t2_line = _get_refvals(referent, "t2_line", repeat, multi)
t2 = getvar(in_wrfnc, "T2", timeidx=timeidx)
pivot_point = CoordPair(t2.shape[-1] / 2, t2.shape[-2] / 2)
#t2_line1 = interpline(to_np(t2), pivot_point=pivot_point,
# angle=90.0, latlon=True)
# Make sure the numpy version works
t2_line1 = interpline(to_np(t2), pivot_point=pivot_point,
angle=90.0)
t2_line1 = interpline(t2, pivot_point=pivot_point, angle=90.0)
# Note: After NCL is fixed, remove the slice.
nt.assert_allclose(to_np(t2_line1)[...,0:-1], ref_t2_line)
# Test the manual projection method with lat/lon
lats = t2.coords["XLAT"]
lons = t2.coords["XLONG"]
ll_point = ll_points(lats, lons)
pivot = CoordPair(lat=lats[lats.shape[-2]/2, lats.shape[-1]/2],
lon=lons[lons.shape[-2]/2, lons.shape[-1]/2])
l1 = interpline(t2,wrfin=in_wrfnc,pivot_point=pivot_point,
angle=90.0)
l2 = interpline(t2,projection=t2.attrs["projection"],
ll_point=ll_point,
pivot_point=pivot_point, angle=90.)
nt.assert_allclose(to_np(l1), to_np(l2), rtol=.01)
# Test point to point
start_point = CoordPair(0, t2.shape[-2]/2)
end_point = CoordPair(-1, t2.shape[-2]/2)
t2_line2 = interpline(t2, start_point=start_point,
end_point=end_point)
nt.assert_allclose(to_np(t2_line1), to_np(t2_line2))
elif (varname == "vinterp"):
# Tk to theta
fld_tk_theta = _get_refvals(referent, "fld_tk_theta", repeat, multi)
fld_tk_theta = np.squeeze(fld_tk_theta)
tk = getvar(in_wrfnc, "temp", timeidx=timeidx, units="k")
interp_levels = [200,300,500,1000]
# Make sure the numpy version works
field = vinterp(in_wrfnc,
field=to_np(tk),
vert_coord="theta",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
field = vinterp(in_wrfnc,
field=tk,
vert_coord="theta",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
tol = 5/100.
atol = 0.0001
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_tk_theta)))
nt.assert_allclose(to_np(field), fld_tk_theta, tol, atol)
# Tk to theta-e
fld_tk_theta_e = _get_refvals(referent, "fld_tk_theta_e", repeat, multi)
fld_tk_theta_e = np.squeeze(fld_tk_theta_e)
interp_levels = [200,300,500,1000]
field = vinterp(in_wrfnc,
field=tk,
vert_coord="theta-e",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
tol = 3/100.
atol = 50.0001
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_tk_theta_e)/fld_tk_theta_e)*100)
nt.assert_allclose(to_np(field), fld_tk_theta_e, tol, atol)
# Tk to pressure
fld_tk_pres = _get_refvals(referent, "fld_tk_pres", repeat, multi)
fld_tk_pres = np.squeeze(fld_tk_pres)
interp_levels = [850,500]
field = vinterp(in_wrfnc,
field=tk,
vert_coord="pressure",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_tk_pres)))
nt.assert_allclose(to_np(field), fld_tk_pres, tol, atol)
# Tk to geoht_msl
fld_tk_ght_msl = _get_refvals(referent, "fld_tk_ght_msl", repeat, multi)
fld_tk_ght_msl = np.squeeze(fld_tk_ght_msl)
interp_levels = [1,2]
field = vinterp(in_wrfnc,
field=tk,
vert_coord="ght_msl",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_tk_ght_msl)))
nt.assert_allclose(to_np(field), fld_tk_ght_msl, tol, atol)
# Tk to geoht_agl
fld_tk_ght_agl = _get_refvals(referent, "fld_tk_ght_agl", repeat, multi)
fld_tk_ght_agl = np.squeeze(fld_tk_ght_agl)
interp_levels = [1,2]
field = vinterp(in_wrfnc,
field=tk,
vert_coord="ght_agl",
interp_levels=interp_levels,
extrapolate=True,
field_type="tk",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_tk_ght_agl)))
nt.assert_allclose(to_np(field), fld_tk_ght_agl, tol, atol)
# Hgt to pressure
fld_ht_pres = _get_refvals(referent, "fld_ht_pres", repeat, multi)
fld_ht_pres = np.squeeze(fld_ht_pres)
z = getvar(in_wrfnc, "height", timeidx=timeidx, units="m")
interp_levels = [500,50]
field = vinterp(in_wrfnc,
field=z,
vert_coord="pressure",
interp_levels=interp_levels,
extrapolate=True,
field_type="ght",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_ht_pres)))
nt.assert_allclose(to_np(field), fld_ht_pres, tol, atol)
# Pressure to theta
fld_pres_theta = _get_refvals(referent, "fld_pres_theta", repeat, multi)
fld_pres_theta = np.squeeze(fld_pres_theta)
p = getvar(in_wrfnc, "pressure", timeidx=timeidx)
interp_levels = [200,300,500,1000]
field = vinterp(in_wrfnc,
field=p,
vert_coord="theta",
interp_levels=interp_levels,
extrapolate=True,
field_type="pressure",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_pres_theta)))
nt.assert_allclose(to_np(field), fld_pres_theta, tol, atol)
# Theta-e to pres
fld_thetae_pres = _get_refvals(referent, "fld_thetae_pres", repeat, multi)
fld_thetae_pres = np.squeeze(fld_thetae_pres)
eth = getvar(in_wrfnc, "eth", timeidx=timeidx)
interp_levels = [850,500,5]
field = vinterp(in_wrfnc,
field=eth,
vert_coord="pressure",
interp_levels=interp_levels,
extrapolate=True,
field_type="theta-e",
timeidx=timeidx,
log_p=True)
field = np.squeeze(field)
#print (np.amax(np.abs(to_np(field) - fld_thetae_pres)))
nt.assert_allclose(to_np(field), fld_thetae_pres, tol, atol)
return test
def extract_proj_params(wrfnc):
attrs = extract_global_attrs(wrfnc, ("MAP_PROJ", "TRUELAT1", "TRUELAT2",
"STAND_LON", "POLE_LAT", "POLE_LON",
"DX", "DY"))
result = {key.lower(): val for key,val in viewitems(attrs)}
if is_multi_file(wrfnc):
wrfnc = wrfnc[0]
result["known_x"] = 0
result["known_y"] = 0
result["ref_lat"] = wrfnc.variables["XLAT"][0,0,0]
result["ref_lon"] = wrfnc.variables["XLONG"][0,0,0]
return result
def make_latlon_test(testid, wrf_in, referent, single, multi=False, repeat=3,
pynio=False):
def test(self):
try:
from netCDF4 import Dataset as NetCDF
except:
pass
try:
from PyNIO import Nio
except:
pass
if not multi:
timeidx = 0
if not pynio:
in_wrfnc = NetCDF(wrf_in)
else:
# Note: Python doesn't like it if you reassign an outer scoped
# variable (wrf_in in this case)
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
in_wrfnc = Nio.open_file(wrf_file)
else:
timeidx = None
if not pynio:
nc = NetCDF(wrf_in)
in_wrfnc = [nc for i in xrange(repeat)]
else:
if not wrf_in.endswith(".nc"):
wrf_file = wrf_in + ".nc"
else:
wrf_file = wrf_in
nc = Nio.open_file(wrf_file)
in_wrfnc = [nc for i in xrange(repeat)]
refnc = NetCDF(referent)
if testid == "xy":
# Since this domain is not moving, the reference values are the
# same whether there are multiple or single files
ref_vals = refnc.variables["ij"][:]
# Lats/Lons taken from NCL script, just hard-coding for now
lats = [-55, -60, -65]
lons = [25, 30, 35]
# Just call with a single lat/lon
if single:
xy = ll_to_xy(in_wrfnc, lats[0], lons[0])
xy = xy + 1 # NCL uses fortran indexing
ref = ref_vals[:,0]
nt.assert_allclose(to_np(xy), ref)
# Next make sure the 'proj' version works
projparams = extract_proj_params(in_wrfnc)
xy_proj = ll_to_xy_proj(lats[0], lons[0], **projparams)
nt.assert_allclose(to_np(xy_proj), to_np(xy-1))
else:
xy = ll_to_xy(in_wrfnc, lats, lons)
xy = xy + 1 # NCL uses fortran indexing
ref = ref_vals[:]
nt.assert_allclose(to_np(xy), ref)
# Next make sure the 'proj' version works
projparams = extract_proj_params(in_wrfnc)
xy_proj = ll_to_xy_proj(lats, lons, **projparams)
nt.assert_allclose(to_np(xy_proj), to_np(xy-1))
else:
# Since this domain is not moving, the reference values are the
# same whether there are multiple or single files
ref_vals = refnc.variables["ll"][:]
# i_s, j_s taken from NCL script, just hard-coding for now
# NCL uses 1-based indexing for this, so need to subtract 1
i_s = np.asarray([10, 100, 150], int) - 1
j_s = np.asarray([10, 100, 150], int) - 1
if single:
ll = xy_to_ll(in_wrfnc, i_s[0], j_s[0])
ref = ref_vals[::-1,0]
nt.assert_allclose(to_np(ll), ref)
# Next make sure the 'proj' version works
projparams = extract_proj_params(in_wrfnc)
ll_proj = xy_to_ll_proj(i_s[0], j_s[0], **projparams)
nt.assert_allclose(to_np(ll_proj), to_np(ll))
else:
ll = xy_to_ll(in_wrfnc, i_s, j_s)
ref = ref_vals[::-1,:]
nt.assert_allclose(to_np(ll), ref)
# Next make sure the 'proj' version works
projparams = extract_proj_params(in_wrfnc)
ll_proj = xy_to_ll_proj(i_s, j_s, **projparams)
nt.assert_allclose(to_np(ll_proj), to_np(ll))
return test
class WRFVarsTest(ut.TestCase):
longMessage = True
class WRFInterpTest(ut.TestCase):
longMessage = True
class WRFLatLonTest(ut.TestCase):
longMessage = True
if __name__ == "__main__":
from wrf import (omp_set_num_threads, omp_set_schedule, omp_get_schedule,
omp_set_dynamic, omp_get_num_procs, OMP_SCHED_STATIC)
omp_set_num_threads(omp_get_num_procs()-1)
omp_set_schedule(OMP_SCHED_STATIC, 0)
omp_set_dynamic(False)
ignore_vars = [] # Not testable yet
wrf_vars = ["avo", "eth", "cape_2d", "cape_3d", "ctt", "dbz", "mdbz",
"geopt", "helicity", "lat", "lon", "omg", "p", "pressure",
"pvo", "pw", "rh2", "rh", "slp", "ter", "td2", "td", "tc",
"theta", "tk", "tv", "twb", "updraft_helicity", "ua", "va",
"wa", "uvmet10", "uvmet", "z", "cfrac", "zstag", "geopt_stag"]
interp_methods = ["interplevel", "vertcross", "interpline", "vinterp"]
latlon_tests = ["xy", "ll"]
try:
import netCDF4
except ImportError:
pass
else:
for var in wrf_vars:
if var in ignore_vars:
continue
test_func1 = make_test(var, TEST_FILE, OUT_NC_FILE)
test_func2 = make_test(var, TEST_FILE, OUT_NC_FILE, multi=True)
setattr(WRFVarsTest, 'test_{0}'.format(var), test_func1)
setattr(WRFVarsTest, 'test_multi_{0}'.format(var), test_func2)
for method in interp_methods:
test_interp_func1 = make_interp_test(method, TEST_FILE,
OUT_NC_FILE)
test_interp_func2 = make_interp_test(method, TEST_FILE,
OUT_NC_FILE, multi=True)
setattr(WRFInterpTest, 'test_{0}'.format(method),
test_interp_func1)
setattr(WRFInterpTest, 'test_multi_{0}'.format(method),
test_interp_func2)
for testid in latlon_tests:
for single in (True, False):
for multi in (True, False):
test_ll_func = make_latlon_test(testid, TEST_FILE,
OUT_NC_FILE,
single=single, multi=multi,
repeat=3, pynio=False)
multistr = "" if not multi else "_multi"
singlestr = "_nosingle" if not single else "_single"
test_name = "test_{}{}{}".format(testid, singlestr,
multistr)
setattr(WRFLatLonTest, test_name, test_ll_func)
try:
import PyNIO
except ImportError:
pass
else:
for var in wrf_vars:
if var in ignore_vars:
continue
test_func1 = make_test(var, TEST_FILE, OUT_NC_FILE, pynio=True)
test_func2 = make_test(var, TEST_FILE, OUT_NC_FILE, multi=True,
pynio=True)
setattr(WRFVarsTest, 'test_pynio_{0}'.format(var), test_func1)
setattr(WRFVarsTest, 'test_pynio_multi_{0}'.format(var),
test_func2)
for method in interp_methods:
test_interp_func1 = make_interp_test(method, TEST_FILE,
OUT_NC_FILE)
test_interp_func2 = make_interp_test(method, TEST_FILE,
OUT_NC_FILE, multi=True)
setattr(WRFInterpTest, 'test_pynio_{0}'.format(method),
test_interp_func1)
setattr(WRFInterpTest, 'test_pynio_multi_{0}'.format(method),
test_interp_func2)
for testid in latlon_tests:
for single in (True, False):
for multi in (True, False):
test_ll_func = make_latlon_test(testid, TEST_FILE,
OUT_NC_FILE,
single=single, multi=multi,
repeat=3, pynio=False)
multistr = "" if not multi else "_multi"
singlestr = "_nosingle" if not single else "_single"
test_name = "test_pynio_{}{}{}".format(testid,
singlestr,
multistr)
setattr(WRFLatLonTest, test_name, test_ll_func)
ut.main()