A collection of diagnostic and interpolation routines for use with output from the Weather Research and Forecasting (WRF-ARW) Model.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

44 lines
1.3 KiB

import sys
import os
try:
from unittest.mock import MagicMock
except ImportError:
from mock import Mock as MagicMock
class Mock(MagicMock):
@classmethod
def __getattr__(cls, name):
return Mock()
MOCK_MODULES = ["numpy", "numpy.ma", "xarray", "cartopy",
"pandas", "matplotlib", "netCDF4", "mpl_toolkits.basemap",
"wrf._wrffortran"]
sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)
consts = {"DEFAULT_FILL" : 9.9692099683868690E36,
"DEFAULT_FILL_INT8" : -127,
"DEFAULT_FILL_INT16" : -32767,
"DEFAULT_FILL_INT32" : -2147483647,
"DEFAULT_FILL_INT64" : -9223372036854775806,
"DEFAULT_FILL_FLOAT" : 9.9692099683868690E36,
"DEFAULT_FILL_DOUBLE" : 9.9692099683868690E36,
"fomp_sched_static" : 1,
"fomp_sched_dynamic" : 2,
"fomp_sched_guided" : 3,
"fomp_sched_auto" : 4}
class MockWrfConstants(object):
def __init__(self):
self.__dict__ = consts
def mock_asscalar(val):
return float(val)
sys.modules["wrf._wrffortran"].wrf_constants = MockWrfConstants()
sys.modules["wrf._wrffortran"].omp_constants = MockWrfConstants()
sys.modules["numpy"].asscalar = mock_asscalar
import wrf
print (wrf.get_coord_pairs.__doc__)