A collection of diagnostic and interpolation routines for use with output from the Weather Research and Forecasting (WRF-ARW) Model.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

40 lines
1.4 KiB

from netCDF4 import Dataset
VARS_TO_KEEP = ("Times", "XLAT", "XLONG", "XLAT_U", "XLAT_V", "XLONG_U",
"XLONG_V", "U", "V", "W", "PH", "PHB", "T", "P", "PB", "Q2",
"T2", "PSFC", "U10", "V10", "XTIME", "QVAPOR", "QCLOUD",
"QGRAUP", "QRAIN", "QSNOW", "QICE", "MAPFAC_M", "MAPFAC_U",
"MAPFAC_V", "F", "HGT", "RAINC", "RAINSH", "RAINNC",
"I_RAINC", "I_RAINNC")
INPUT_FILE = "wrfout_d02_2005-08-28_00:00:00"
OUTPUT_FILE = "wrfout_problem_file"
DESIRED_TIME_INDEX = 0
with Dataset(INPUT_FILE) as infile, Dataset(OUTPUT_FILE, mode="w") as outfile:
# Copy the global attributes
outfile.setncatts(infile.__dict__)
# Copy Dimensions
for name, dimension in infile.dimensions.items():
if name != "Time":
dimsize = len(dimension)
outfile.createDimension(name, dimsize)
else:
outfile.createDimension(name, 1)
# Copy Variables
for name, variable in infile.variables.iteritems():
if name not in VARS_TO_KEEP:
continue
outvar = outfile.createVariable(name, variable.datatype,
variable.dimensions, zlib=True)
if len(variable.dimensions) > 1:
outvar[:] = variable[DESIRED_TIME_INDEX, :]
else:
outvar[:] = variable[DESIRED_TIME_INDEX]
outvar.setncatts(variable.__dict__)