A collection of diagnostic and interpolation routines for use with output from the Weather Research and Forecasting (WRF-ARW) Model.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

145 lines
5.9 KiB

from __future__ import (absolute_import, division, print_function)
import numpy as np
import numpy.ma as ma
from .extension import _ctt, _tk
from .constants import Constants, ConversionFactors, default_fill
from .destag import destagger
from .decorators import convert_units
from .metadecorators import copy_and_set_metadata
from .util import extract_vars
@copy_and_set_metadata(copy_varname="T", name="ctt",
remove_dims=("bottom_top",),
description="cloud top temperature",
MemoryOrder="XY")
@convert_units("temp", "c")
def get_ctt(wrfin, timeidx=0, method="cat",
squeeze=True, cache=None, meta=True, _key=None,
fill_nocloud=False, missing=default_fill(np.float64),
opt_thresh=1.0, units="degC"):
"""Return the cloud top temperature.
This functions extracts the necessary variables from the NetCDF file
object in order to perform the calculation.
Args:
wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \
iterable): WRF-ARW NetCDF
data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile`
or an iterable sequence of the aforementioned types.
timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The
desired time index. This value can be a positive integer,
negative integer, or
:data:`wrf.ALL_TIMES` (an alias for None) to return
all times in the file or sequence. The default is 0.
method (:obj:`str`, optional): The aggregation method to use for
sequences. Must be either 'cat' or 'join'.
'cat' combines the data along the Time dimension.
'join' creates a new dimension for the file index.
The default is 'cat'.
squeeze (:obj:`bool`, optional): Set to False to prevent dimensions
with a size of 1 from being automatically removed from the shape
of the output. Default is True.
cache (:obj:`dict`, optional): A dictionary of (varname, ndarray)
that can be used to supply pre-extracted NetCDF variables to the
computational routines. It is primarily used for internal
purposes, but can also be used to improve performance by
eliminating the need to repeatedly extract the same variables
used in multiple diagnostics calculations, particularly when using
large sequences of files.
Default is None.
meta (:obj:`bool`, optional): Set to False to disable metadata and
return :class:`numpy.ndarray` instead of
:class:`xarray.DataArray`. Default is True.
_key (:obj:`int`, optional): A caching key. This is used for internal
purposes only. Default is None.
fill_nocloud (:obj:`bool`, optional): Set to True to use fill values in
regions where clouds are not detected (optical depth less than 1).
Otherwise, the output will contain the surface temperature for
areas without clouds. Default is False.
missing (:obj:`float`, optional): The fill value to use for areas
where no clouds are detected. Only used if *fill_nocloud* is
True. Default is
:data:`wrf.default_fill(numpy.float64)`.
opt_thresh (:obj:`float`, optional): The amount of optical
depth (integrated from top down) required to trigger a cloud top
temperature calculation. The cloud top temperature is calculated at
the vertical level where this threshold is met. Vertical columns
with less than this threshold will be treated as cloud free areas.
In general, the larger the value is for this
threshold, the lower the altitude will be for the cloud top
temperature calculation, and therefore higher cloud top
temperature values. Default is 1.0, which should be sufficient for
most users.
units (:obj:`str`): The desired units. Refer to the :meth:`getvar`
product table for a list of available units for 'ctt'. Default
is 'degC'.
Returns:
:class:`xarray.DataArray` or :class:`numpy.ndarray`: The
cloud top temperature.
If xarray is enabled and the *meta* parameter is True, then the result
will be a :class:`xarray.DataArray` object. Otherwise, the result will
be a :class:`numpy.ndarray` object with no metadata.
"""
varnames = ("T", "P", "PB", "PH", "PHB", "HGT", "QVAPOR")
ncvars = extract_vars(wrfin, timeidx, varnames, method, squeeze, cache,
meta=False, _key=_key)
t = ncvars["T"]
p = ncvars["P"]
pb = ncvars["PB"]
ph = ncvars["PH"]
phb = ncvars["PHB"]
ter = ncvars["HGT"]
qv = ncvars["QVAPOR"] * 1000.0 # g/kg
haveqci = 1
try:
icevars = extract_vars(wrfin, timeidx, "QICE",
method, squeeze, cache, meta=False,
_key=_key)
except KeyError:
qice = np.zeros(qv.shape, qv.dtype)
haveqci = 0
else:
qice = icevars["QICE"] * 1000.0 # g/kg
try:
cldvars = extract_vars(wrfin, timeidx, "QCLOUD",
method, squeeze, cache, meta=False,
_key=_key)
except KeyError:
raise RuntimeError("'QCLOUD' not found in NetCDF file")
else:
qcld = cldvars["QCLOUD"] * 1000.0 # g/kg
full_p = p + pb
p_hpa = full_p * ConversionFactors.PA_TO_HPA
full_t = t + Constants.T_BASE
tk = _tk(full_p, full_t)
geopt = ph + phb
geopt_unstag = destagger(geopt, -3)
ght = geopt_unstag / Constants.G
_fill_nocloud = 1 if fill_nocloud else 0
ctt = _ctt(p_hpa, tk, qice, qcld, qv, ght, ter, haveqci, _fill_nocloud,
missing, opt_thresh)
return ma.masked_values(ctt, missing)