from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import numpy.ma as ma #from .extension import computectt, computetk from .extension import _ctt, _tk from .constants import Constants, ConversionFactors, default_fill from .destag import destagger from .decorators import convert_units from .metadecorators import copy_and_set_metadata from .util import extract_vars @copy_and_set_metadata(copy_varname="T", name="ctt", remove_dims=("bottom_top",), description="cloud top temperature", MemoryOrder="XY") @convert_units("temp", "c") def get_ctt(wrfin, timeidx=0, method="cat", squeeze=True, cache=None, meta=True, _key=None, fill_nocloud=False, missing=default_fill(np.float64), opt_thresh=1.0, units="degC"): """Return the cloud top temperature. This functions extracts the necessary variables from the NetCDF file object in order to perform the calculation. Args: wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \ iterable): WRF-ARW NetCDF data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile` or an iterable sequence of the aforementioned types. timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The desired time index. This value can be a positive integer, negative integer, or :data:`wrf.ALL_TIMES` (an alias for None) to return all times in the file or sequence. The default is 0. method (:obj:`str`, optional): The aggregation method to use for sequences. Must be either 'cat' or 'join'. 'cat' combines the data along the Time dimension. 'join' creates a new dimension for the file index. The default is 'cat'. squeeze (:obj:`bool`, optional): Set to False to prevent dimensions with a size of 1 from being automatically removed from the shape of the output. Default is True. cache (:obj:`dict`, optional): A dictionary of (varname, ndarray) that can be used to supply pre-extracted NetCDF variables to the computational routines. It is primarily used for internal purposes, but can also be used to improve performance by eliminating the need to repeatedly extract the same variables used in multiple diagnostics calculations, particularly when using large sequences of files. Default is None. meta (:obj:`bool`, optional): Set to False to disable metadata and return :class:`numpy.ndarray` instead of :class:`xarray.DataArray`. Default is True. _key (:obj:`int`, optional): A caching key. This is used for internal purposes only. Default is None. fill_nocloud (:obj:`bool`, optional): Set to True to use fill values in regions where clouds are not detected (optical depth less than 1). Otherwise, the output will contain the surface temperature for areas without clouds. Default is False. missing (:obj:`float`, optional): The fill value to use for areas where no clouds are detected. Only used if *fill_nocloud* is True. Default is :data:`wrf.default_fill(numpy.float64)`. opt_thresh (:obj:`float`, optional): The amount of optical depth (integrated from top down) required to trigger a cloud top temperature calculation. The cloud top temperature is calculated at the vertical level where this threshold is met. Vertical columns with less than this threshold will be treated as cloud free areas. In general, the larger the value is for this threshold, the lower the altitude will be for the cloud top temperature calculation, and therefore higher cloud top temperature values. Default is 1.0, which should be sufficient for most users. units (:obj:`str`): The desired units. Refer to the :meth:`getvar` product table for a list of available units for 'ctt'. Default is 'degC'. Returns: :class:`xarray.DataArray` or :class:`numpy.ndarray`: The cloud top temperature. If xarray is enabled and the *meta* parameter is True, then the result will be a :class:`xarray.DataArray` object. Otherwise, the result will be a :class:`numpy.ndarray` object with no metadata. """ varnames = ("T", "P", "PB", "PH", "PHB", "HGT", "QVAPOR") ncvars = extract_vars(wrfin, timeidx, varnames, method, squeeze, cache, meta=False, _key=_key) t = ncvars["T"] p = ncvars["P"] pb = ncvars["PB"] ph = ncvars["PH"] phb = ncvars["PHB"] ter = ncvars["HGT"] qv = ncvars["QVAPOR"] * 1000.0 # g/kg haveqci = 1 try: icevars = extract_vars(wrfin, timeidx, "QICE", method, squeeze, cache, meta=False, _key=_key) except KeyError: qice = np.zeros(qv.shape, qv.dtype) haveqci = 0 else: qice = icevars["QICE"] * 1000.0 #g/kg try: cldvars = extract_vars(wrfin, timeidx, "QCLOUD", method, squeeze, cache, meta=False, _key=_key) except KeyError: raise RuntimeError("'QCLOUD' not found in NetCDF file") else: qcld = cldvars["QCLOUD"] * 1000.0 #g/kg full_p = p + pb p_hpa = full_p * ConversionFactors.PA_TO_HPA full_t = t + Constants.T_BASE tk = _tk(full_p, full_t) geopt = ph + phb geopt_unstag = destagger(geopt, -3) ght = geopt_unstag / Constants.G _fill_nocloud = 1 if fill_nocloud else 0 ctt = _ctt(p_hpa, tk, qice, qcld, qv, ght, ter, haveqci, _fill_nocloud, missing, opt_thresh) return ma.masked_values(ctt, missing)