"### 1.0.2 Removing implicit 'squeeze' behavior to preserve single sized dimensions"
"### 1.0.2 Removing implicit 'squeeze' behavior to preserve single sized dimensions"
]
]
@ -68,7 +83,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -78,7 +95,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"### 1.0.3 Single element metadata"
"### 1.0.3 Single element metadata"
]
]
@ -87,7 +107,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -97,7 +119,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"### 1.0.4 Disabling/Enabling xarray"
"### 1.0.4 Disabling/Enabling xarray"
]
]
@ -106,7 +131,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -130,14 +157,20 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"# 2.0 Sequences of Input Files "
"# 2.0 Sequences of Input Files "
]
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"## 2.0.1 Combining via the 'cat' method"
"## 2.0.1 Combining via the 'cat' method"
]
]
@ -146,7 +179,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -161,7 +196,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"## 2.0.2 Combining via the 'join' method"
"## 2.0.2 Combining via the 'join' method"
]
]
@ -170,7 +208,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -180,7 +220,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"Note how the Time dimension was replaced with the file dimension, due to the 'squeezing' of the Time dimension.\n",
"Note how the Time dimension was replaced with the file dimension, due to the 'squeezing' of the Time dimension.\n",
"\n",
"\n",
@ -192,7 +235,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -204,7 +249,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"## 2.0.3 Dictionary Sequences"
"## 2.0.3 Dictionary Sequences"
]
]
@ -213,7 +261,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -226,7 +276,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"## 2.0.4 Generator Sequences"
"## 2.0.4 Generator Sequences"
]
]
@ -235,7 +288,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -251,7 +306,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"## 2.0.5 Custom Iterable Classes"
"## 2.0.5 Custom Iterable Classes"
]
]
@ -260,7 +318,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -296,7 +356,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"# 3.0 WRF Variable Computational Routines"
"# 3.0 WRF Variable Computational Routines"
]
]
@ -305,7 +368,9 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -324,7 +389,10 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"source": [
"(Note all of the NaNs in the above routines which produce missing values (e.g. cape_2d). xarray always converts all masked_array missing values to NaN in order to work with pandas. To get back the original missing values in a numpy masked_array, you need to use the 'to_np' method from wrf.)"
"(Note all of the NaNs in the above routines which produce missing values (e.g. cape_2d). xarray always converts all masked_array missing values to NaN in order to work with pandas. To get back the original missing values in a numpy masked_array, you need to use the 'to_np' method from wrf.)"